
DARKSIDE
2.1.2.3

A DETAILED ANALYSIS OF A NEW VERSION OF

DARKSIDE 2.1.2.3
RANSOMWARE

AUTHOR: NIHAR DESHPANDE

Table of contents:

Sr.No.

1

2

3

4

5

6

Section Page No.

Introduction

Technical
analysis

Detection

Conclusion

IOCs

MITRE ATT&CK Mapping

Static
analysis

Header

Strings

Configuration

Unique ID

Service Creation

User data collection

Encryption

2.1

2.2

2.3

2.4

2.5

2.6

2.7

01

02

03

04

11

13

15

22

26

26

27

27

Dynamic
analysis

Introduction

Darkside ransomware is the malware family behind the Colonial Pipeline attack.

According to the reports, Darkside has stopped its operations, but still,

organizations are putting considerable efforts to track this down and avoid such

attacks in the future. In early May, Darkside caused the six-day outage at Colonial

Pipeline, a company responsible for almost half the fuel supply on the US east

coast. Stores of gasoline, diesel, home heating oil, jet fuel, and military supplies

had been heavily affected. The FBI has confirmed that Darkside, a cybercriminal

group believed to have originated in Eastern Europe, is behind the attack. The

ransomware used by the group is a relatively new family that was first spotted in

August 2020, but the group draws on experience from previous financially

successful cybercrime enterprises.

Fig. Flowchart sample

Main File

Exists

Decrypts Config and
creates unique ID

Checks for the unique
service name and
creates a Service
if its not present

Runs itself with
elevated privileges
and 3 parameters

Creates ico
and bmp files

Starts encryption
using multiple threads

---- 01

Technical Analysis

Static Analysis

2.1 Header

Looking at the Darkside sample in PEView, we find only 2 DLLs in the import

table with only three functions. Further checking the sections, we can see that

the virtual size of the section is far more than its raw size, which gives us an idea

that the file might be packed.

Fig. Import Address Table

Fig. Section Header

---- 02

---- 03

2.2 Strings

We can also see that we don’t have any substantial strings that are available to

get a rough idea.

So, we analysed the file dynamically using IDA Pro and x64dbg.

Fig. Strings

---- 04

Dynamic Analysis

Fig. Entry point

Fig. Custom Algorithm

2.1 Configuration:

The last section contains encrypted data, which is put through a custom

algorithm as per the requirement. The entry point of Darkside 2.1.2.3 shows three

functions. The first function takes the first 10 bytes of the last section as input and

puts them through a sequence of 4 subtraction operations with 0x10101010 and

some additional operations, as shown in the diagram.

---- 05

 The second function accesses PEB data and does some mov operations.

Fig. PEB data accessing

The third function is essential as it performs all the essential functionality from

DLL loading to decrypting the config data etc.

As we can see in the import table, only 2 DLLs are present, including just three

functions. A hash function in Darkside compares the hash value associated with

DLL names. The hardcoded values are used for comparison, and they are

associated with Kernel32.dll and LoadLibrary and GetProcAddress functions.

NTDLL, kernel32, advapi32, user32, gdi32, ole32, oleaut32, shell32, SHLWAPI,

WININET, netapi32, wtsapi32, ACTIVEDS, USERENV, MPR, RSTRTMGR are the

DLLs that will also be loaded in further calls.

---- 06

Fig. Dll and function hash matching

The decrypted configuration contains RSA-1024 exponent, RSA-1024 modulus,

victim UID, 22 configurations bytes.

---- 07

Fig. RSA-1024 exponent, RSA-1024 modulus,
victim UID, 22 configurations bytes

The ransom note is written in the memory.

Fig. Ransom note in memory

Fig. C2 Servers in memory

▶ The C2 servers are written, namely, baroquetees.com and rumahsia.com as

seen in figure.

---- 08

Fig. Exclusion list of directories, in memory

Fig. Files to be ignored

▶ Directories to be avoided in the encryption process, recycle bin, Program Data,

Program Files etc. as shown in figure:

▶ Files to be ignored by the ransomware:

---- 09

Fig. Extension exclusion list

Fig. Exclusion list for process termination

▶ Exclusion list of extensions:

▶ Exclusion list for process termination

---- 10

Fig. Process kill list

Fig. Service kill and delete list

▶ These processes will be killed by the ransomware:

▶ The list of services to be stopped and deleted:

The malware then checks for the keyboard language and compares it with 419

which is Russian. For any other language, the ransomware will continue its

execution. It uses NtQueryInstallUILanguage API to check for the language code.

---- 11

Fig. Check Language

Fig. Unique ID generation code

2.2 Unique ID:

A custom algorithm uses “MachineGuid” value as the input, and the algorithm

applies 8 times to generate a unique ID

---- 12

Fig. Unique ID (0b2cb84a)

Fig. Unique ID generation code

The value computed above will be used in the following constructions. In the

above data we can see (.0b2cb84a)

• Each encrypted file will have the following name

• Icon file

• Registry key created

• Service name

• Service display name

• Ransom note

• Wallpaper

Darkside Ransomware attempts UAC bypass via CMSTPLUA COM interface.

SHTestTokenMembership API is used to check if the user belongs to which group.

As seen in the figure, ZwOpenProcessToken is used to access the token

associated with the process. So, the malware will relaunch itself with system-level

privileges.

---- 13

Fig. Check Service

Fig. Create Service

LookupAccountSidW API is used to find the name of the account associated with

the SID. As you can see, NT Authority is used for comparison against our domain

name.

2.3 Service Creation:

The malware then uses the ID to check if a service of that name is running or not.

In the first run, the service of that name is not available.

If it finds that the service is not available, it then goes ahead to create a service of

that name.

---- 14

Fig. Service Created

Fig. Mutex Creation

Fig. Mutex creation

The malware then terminates itself after creating the service. The executing

service will then repeat the upper procedure and check for the Service name in

ServiceManager. This time it will find the service name and change the execution

flow.

Now it will perform the Mutex creation operation so that only one instance is

running at a time. Following are the screens for it.

---- 15

Fig. JSON Data

2.4 Collecting User Data:

After creating the Mutex, the thread generates JSON data of the user which it will

send to the C2 server. Following are the screens.

---- 16

Fig. Filling up JSON data

---- 17

Fig. Delete Shadow copy

Fig. Json encryption

This data is collected using the corresponding APIS and stored in a JSON file

which will later be encrypted. Meanwhile, it executes the following SQL query

“SELECT * FROM Win32_ShadowCopy” to delete each of the shadow copy objects

via the DeleteInstance method:

The malware then retrieves the list of all the running services using the

EnumServicesStatusExW function. It stops and deletes all the services that were

present in the decrypted config mentioned earlier. It further goes on to kill the

targeted processes.

The JSON is then encrypted with a custom algorithm.

---- 18

The result of the encryption operation is base64-encoded, as shown below:

---- 19

After that, it generates a POST request and sends it to the baroquetees.com

Fig. Registry Creation

Fig. WinInet APIs

Fig. Request creation

Some registry entries are also created meanwhile.

---- 20

Fig. HTTP APIs

---- 21

The status code 500 is checked instead of 200, which means it checks for error

instead of success. After this we will review the functionality of main thread again.

The malware then goes ahead to create icon files in the ProgramData directory

with unique ID name:

This image is set as wallpaper value in the registry after the bmp file is dropped.

A named event object called “Local\\ job0-<Process Id>-Event” is created by the

binary as shown in the figure:

Fig. Icon Creation

Fig. Wallpaper

Welcome to DarkSide!

All your files are Encrypted!

Find README.0b2cb84a.TXT and follow instructions!

---- 22

2.6 Encryption:

Later the malware runs itself with 3 parameters corresponding to the process ID

of the earlier one.

The main thread uses following mechanism to generate Salsa20 matrix.

Fig. Creating new processes with 3 parameters.

---- 23

The ransomware checks if the RDRAND and RDSEED instructions are supported

by the processor. If it fails, it uses RDTSC to generate 64 byte matrix.

This matrix is encrypted using implementation of RSA-1024 as follows:

Fig. Code to generate SALSA-20 matrix

---- 24

Now, after encrypting the matrix, the original

matrix, the encrypted matrix, and its 16-byte hash

value and the file data to be encrypted are sent to

the other thread.

The file content is encrypted using a custom

Salsa20.

Fig. AES to encrypt matrix

Fig. Salsa 20 Implementation

---- 25

Fig. CreateFile

Fig. Seek pointer and readfile

Every targeted file is opened and read using the CreateFileW and ReadFile

functions

Quick Heal detects this malware as

Ransom.Darkside.S21012356. Apart from

real-time protection, this malware is also

seen by Quick Heal ARW (Anti

Ransomware Protection) as HEUR:

Ransom.Win32.InP, NGAV (Behaviour

Detection System) as Darkside and Seqrite

HawkkHunt (Endpoint Detection &

Response) as QHIR_DARKSIDE.

The Darkside ransomware attack

contributed to business disruption in the

Colonial pipeline attack. We can expect

the initial attack vector technique to

change within short intervals, making

their presence among ransomware solid

and sound.

It has been deleting shadow copies to

prevent recovery. Such strict measures can

be expected in the following variants.

Quick Heal detects the ransomware at

various steps of the infection chain using

its ARW, NGAV, and EDR policies. Users are

advised to keep their anti-malware

products up-to-date.

---- 26

Detection

DE
TE

CT
IO

N
CO

NC
LU

SIO
N Conclusion

IOCs

Mitre ATT&CK TTP Mappingv

SHA256:

afb22b1ff281c085b60052831ead0a0ed300fac0160f87851dacc67d4e158178

0a0c225f0e5ee941a79f2b7701f1285e4975a2859eb4d025d96d9e366e81abb9

Valid Accounts

PowerShell

System Services: Service Execution

Account Manipulation

Process Injection: Dynamic-link Library Injection

Account Discovery

Abuse Elevation Control Mechanism: Bypass User Access Control

File Permissions Modification

Data Encrypted for Impact

Inhibit System Recovery

System Information Discovery

Process Discovery

Screen Capture

Compile After Delivery

Service Execution

T1078

T1086

T1569

T1098

T1055

T1087

T1548

T1222

T1486

T1490

T1082

T1057

T1113

T1500

T1035

Quick Heal Technologies Ltd.
Marvel Edge, Office No. 7010 C & D, 7th Floor, Viman Nagar, Pune,
Maharashtra, India - 411014.
Phone: 1800 212 7377 | info@quickheal.co.in | www.quickheal.com

All Intellectual Property Right(s) including trademark(s), logo(s) and copyright(s) are properties of their respective owners.

